Energy Partition of the Flare-CME Events

Ryoma Matsuura Advisor: Dr. Chunming Zhu

Background / Objective

Goal: To find the energy partition of the CME and the flare

- How much energy goes to the flares?
- How much energy is released with the CMEs?

Methods Overview

- Calculate energies separately, then compare
- CME
 - STEREO Images
 - Brightness corresponding to the mass concentration
 - Find the center of mass, track its motion over time
- Flare
 - SDO Images
 - EBTEL (enthalpy-based thermal evolution of loops)
 - Determining unknown scaling factors

Basic Steps for Calculating Flare Energies

Step 1: Finding flare ribbons

- Look for bright pixels in images from SDO

Step 2: Finding information needed for calculation

- Apply Gaussian fitting to the light curves
- Model magnetic field lines and determine their lengths

Basic Steps for Calculating Flare Energies

Step 3: Calculating temperature and density

- Try different test values for unknown scaling factors

Step 4: Generating synthetic emission curves

Step 5: Compare synthetic emission curves with observed light curves

- Determine what combination of the test values give the best emission curves

Step 6: Energy Evolution

- Observe how the amount of heat put into the flares and radiation loss from the corona and the transition region changes over time

Synthetic Emission v.s. Observed Lightcurves

Synthetic Emission v.s. Observed Lightcurves

Results so far

- Finding the best ways to compare synthetic emission to the original lightcurves
 - Area method
 - Correlation method
- Finding the best combination of values for the 3 parameters
 - 4/125 combinations making top 10 in both methods
- Generating energy evolution plot

Example of an Energy Evolution Plot

What's Next

- Make adjustments to the comparison methods if necessary
- Determining the best 3 values for the scaling factors in more precision
- Calculate CME energies
- Work on more flare events
- Compare energies to get the energy partition